Artificial Intelligence-Based Learning (AIBL) in the Field of Physical Education
Main Article Content
Abstract
The rapid emergence of Artificial Intelligence (AI) is changing the pedagogical and methodological foundations of Physical Education (PE). AI-based learning (AILD) combines machine learning algorithms, biometric data analysis, and content generation for highly personalized experiences and real-time feedback. This article critically reflects on the transformative potential of AILD in PE, analyzing its strengths, limitations, and ethical challenges. Drawing on recent literature and the Latin American context, we propose courses of action for researchers, educators, and educational policymakers.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
International Academic Journal of Physical Education, is licensed under the Creative Commons Attribution 4.0 International License (CC BY-NC-ND), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source is credited.
![]()
References
Ahn, D., & Lim, H. (2025). Exploring K 12 physical education teachers’ perspectives on opportunities and challenges of AI integration through ideation workshops. En Proceedings of the CHI Conference on Human Factors in Computing Systems (pp. 1–15). https://doi.org/10.1145/3706598.3713646
Caballero, P., & Ramos, L. (2025). Docentes en la era de la IA: Autonomía profesional y nuevos desafíos en educación física. Revista Latinoamericana de Tecnología Educativa, 24(1), 33-48.
Cui, B., Jiao, W., Gui, S., Li, Y., & Fang, Q. (2025). Innovating physical education with artificial intelligence: A potential approach. Frontiers in Psychology, 16, Article 1490966. https://doi.org/10.3389/fpsyg.2025.1490966
García, D., & Smith, J. (2025). Energy consumption of wearable sensors in school-based physical education. Sustainable Computing, 21, 100-110.
Gómez, C., Ruiz, A., & Hernández, P. (2025). Feedback constante y ansiedad de rendimiento en adolescentes: un estudio en clases de educación física asistidas por IA. Psicología del Deporte, 14(1), 12-27.
Ji, X., Samsudin, S. B., Hassan, M. Z. B., Farizan, N. H., & Yuan, Y. (2025). The application of suitable sports games for junior high school students based on deep learning and artificial intelligence. Scientific Reports, 15, Article 17056. https://doi.org/10.1038/s41598-025-01941-z
Katiyar, R., et al. (2024). The use of artificial intelligence in physical education and movement development in children. Journal of Sports Science Education, 12(3), 45–60.
López, F., & Silva, M. (2025). Construyendo puentes: Colaboración interdisciplinaria para el diseño de herramientas IA en educación física. Innovación Educativa, 30(3), 61-78.
Mhlanga, D. (2024). Data colonialism in AI education initiatives in the Global South. AI & Society, 39(2), 345-360.
Ortega, J. (2024). Inteligencia artificial y práctica corporal: Tensiones entre datos y experiencia. Cultura y Deporte, 10(2), 55-70.
Patel, R., & Zhang, Q. (2024). Cultural uniformity in AI-powered physical education platforms: A critical analysis. Journal of Global Education, 18(4), 72-89.
SHAPE America. (2025). Five ways to use generative artificial intelligence in physical education. Strategies, 18(2), 12–18.
UNESCO. (2024a). AI competency framework for students. UNESCO Publishing.
UNESCO. (2024b). AI competency framework for teachers. UNESCO Publishing.
UNESCO. (2025). Guidance for generative AI in education and research. UNESCO Publishing.
Wang, Y., & Wang, X. (2024). Artificial intelligence in physical education: Comprehensive review and future teacher training strategies. Frontiers in Public Health, 12, Article 1484848. https://doi.org/10.3389/fpubh.2024.1484848
World Economic Forum. (2025). Net-zero classrooms: Assessing the carbon footprint of educational technologies. Davos: WEF.
World Health Organization. (2024). Mental health of young people in the digital era: Implications for education. Ginebra: WHO.